homology cobordism
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 156 (9) ◽  
pp. 1825-1845
Author(s):  
Paolo Aceto ◽  
Daniele Celoria ◽  
JungHwan Park

We consider the question of when a rational homology $3$-sphere is rational homology cobordant to a connected sum of lens spaces. We prove that every rational homology cobordism class in the subgroup generated by lens spaces is represented by a unique connected sum of lens spaces whose first homology group injects in the first homology group of any other element in the same class. As a first consequence, we show that several natural maps to the rational homology cobordism group have infinite-rank cokernels. Further consequences include a divisibility condition between the determinants of a connected sum of $2$-bridge knots and any other knot in the same concordance class. Lastly, we use knot Floer homology combined with our main result to obstruct Dehn surgeries on knots from being rationally cobordant to lens spaces.


2019 ◽  
Vol 63 (4) ◽  
pp. 744-754
Author(s):  
Christopher W. Davis

AbstractAny knot in $S^{3}$ can be reduced to a slice knot by crossing changes. Indeed, this slice knot can be taken to be the unknot. In this paper we study the question of when the same holds for knots in homology spheres. We show that a knot in a homology sphere is nullhomotopic in a smooth homology ball if and only if that knot is smoothly concordant to a knot that is homotopic to a smoothly slice knot. As a consequence, we prove that the equivalence relation on knots in homology spheres given by cobounding immersed annuli in a homology cobordism is generated by concordance in homology cobordisms together with homotopy in a homology sphere.


2019 ◽  
Vol 156 (2) ◽  
pp. 199-250 ◽  
Author(s):  
Matthew Stoffregen

We compute the $\text{Pin}(2)$-equivariant Seiberg–Witten Floer homology of Seifert rational homology three-spheres in terms of their Heegaard Floer homology. As a result of this computation, we prove Manolescu’s conjecture that $\unicode[STIX]{x1D6FD}=-\bar{\unicode[STIX]{x1D707}}$ for Seifert integral homology three-spheres. We show that the Manolescu invariants $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},$ and $\unicode[STIX]{x1D6FE}$ give new obstructions to homology cobordisms between Seifert fiber spaces, and that many Seifert homology spheres $\unicode[STIX]{x1D6F4}(a_{1},\ldots ,a_{n})$ are not homology cobordant to any $-\unicode[STIX]{x1D6F4}(b_{1},\ldots ,b_{n})$. We then use the same invariants to give an example of an integral homology sphere not homology cobordant to any Seifert fiber space. We also show that the $\text{Pin}(2)$-equivariant Seiberg–Witten Floer spectrum provides homology cobordism obstructions distinct from $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},$ and $\unicode[STIX]{x1D6FE}$. In particular, we identify an $\mathbb{F}[U]$-module called connected Seiberg–Witten Floer homology, whose isomorphism class is a homology cobordism invariant.


Author(s):  
Marco Golla ◽  
Kyle Larson

We give simple homological conditions for a rational homology 3-sphere $Y$ to have infinite order in the rational homology cobordism group $\unicode[STIX]{x1D6E9}_{\mathbb{Q}}^{3}$ , and for a collection of rational homology spheres to be linearly independent. These translate immediately to statements about knot concordance when $Y$ is the branched double cover of a knot, recovering some results of Livingston and Naik. The statements depend only on the homology groups of the 3-manifolds, but are proven through an analysis of correction terms and their behavior under connected sums.


2019 ◽  
Vol 23 (2) ◽  
pp. 865-924 ◽  
Author(s):  
Irving Dai ◽  
Matthew Stoffregen

Author(s):  
Kristen Hendricks ◽  
Jennifer Hom ◽  
Tye Lidman

We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms$\bar{d}$and$\text{}\underline{d}$for certain families of three-manifolds.


2018 ◽  
Vol 61 (4) ◽  
pp. 754-767 ◽  
Author(s):  
Tye Lidman ◽  
Eamonn Tweedy

AbstractIn this note, we collect various properties of Seifert homology spheres from the viewpoint of Dehn surgery along a Seifert fiber. We expect that many of these are known to various experts, but include them in one place, which we hope will be useful in the study of concordance and homology cobordism.


Sign in / Sign up

Export Citation Format

Share Document