zariski closure
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lam Pham ◽  
Xin Zhang

Abstract Let S ⊂ GL n ⁢ ( Z ) S\subset\mathrm{GL}_{n}(\mathbb{Z}) be a finite symmetric set. We show that if the Zariski closure of Γ = ⟨ S ⟩ \Gamma=\langle S\rangle is a product of special linear groups or a special affine linear group, then the diameter of the Cayley graph Cay ⁡ ( Γ / Γ ⁢ ( q ) , π q ⁢ ( S ) ) \operatorname{Cay}(\Gamma/\Gamma(q),\pi_{q}(S)) is O ⁢ ( log ⁡ q ) O(\log q) , where 𝑞 is an arbitrary positive integer, π q : Γ → Γ / Γ ⁢ ( q ) \pi_{q}\colon\Gamma\to\Gamma/\Gamma(q) is the canonical projection induced by the reduction modulo 𝑞, and the implied constant depends only on 𝑆.


Author(s):  
Marco Boggi ◽  
Eduard Looijenga

AbstractLet C be a complex smooth projective algebraic curve endowed with an action of a finite group G such that the quotient curve has genus at least 3. We prove that if the G-curve C is very general for these properties, then the natural map from the group algebra $${{\mathbb {Q}}}G$$ Q G to the algebra of $${{\mathbb {Q}}}$$ Q -endomorphisms of its Jacobian is an isomorphism. We use this to obtain (topological) properties regarding certain virtual linear representations of a mapping class group. For example, we show that the connected component of the Zariski closure of such a representation often acts $${{\mathbb {Q}}}$$ Q -irreducibly in a G-isogeny space of $$H^1(C; {{\mathbb {Q}}})$$ H 1 ( C ; Q ) and with image a $${{\mathbb {Q}}}$$ Q -almost simple group.


Author(s):  
Hagen Knaf

A theorem of Lichtenbaum states, that every proper, regular curve [Formula: see text] over a discrete valuation domain [Formula: see text] is projective. This theorem is generalized to the case of an arbitrary valuation domain [Formula: see text] using the following notion of regularity for non-noetherian rings introduced by Bertin: the local ring [Formula: see text] of a point [Formula: see text] is called regular, if every finitely generated ideal [Formula: see text] has finite projective dimension. The generalization is a particular case of a projectivity criterion for proper, normal [Formula: see text]-curves: such a curve [Formula: see text] is projective if for every irreducible component [Formula: see text] of its closed fiber [Formula: see text] there exists a closed point [Formula: see text] of the generic fiber of [Formula: see text] such that the Zariski closure [Formula: see text] meets [Formula: see text] and meets [Formula: see text] in regular points only.


Author(s):  
Yuhan Jiang ◽  
Bernd Sturmfels

AbstractThe image of the cone of positive semidefinite matrices under a linear map is a convex cone. Pataki characterized the set of linear maps for which that image is not closed. The Zariski closure of this set is a hypersurface in the Grassmannian. Its components are the coisotropic hypersurfaces of symmetric determinantal varieties. We develop the convex algebraic geometry of such bad projections, with focus on explicit computations.


2021 ◽  
Vol 127 (1) ◽  
pp. 79-99
Author(s):  
Martin Helsø ◽  
Kristian Ranestad

Rational quartic spectrahedra in $3$-space are semialgebraic convex subsets in $\mathbb{R} ^3$ of semidefinite, real symmetric $(4 \times 4)$-matrices, whose boundary admits a rational parameterization. The Zariski closure in $\mathbb{C}\mathbb{P} ^3$ of the boundary of a rational spectrahedron is a rational complex symmetroid. We give necessary conditions on the configurations of singularities of the corresponding real symmetroids in $\mathbb{R} \mathbb{P} ^3$ of rational quartic spectrahedra. We provide an almost exhaustive list of examples realizing the configurations, and conjecture that the missing example does not occur.


Author(s):  
Doston Jumaniyozov ◽  
Ivan Kaygorodov ◽  
Abror Khudoyberdiyev

We give algebraic and geometric classifications of complex four-dimensional nilpotent noncommutative Jordan algebras. Specifically, we find that, up to isomorphism, there are only 18 non-isomorphic nontrivial nilpotent noncommutative Jordan algebras. The corresponding geometric variety is determined by the Zariski closure of three rigid algebras and two one-parametric families of algebras.


2019 ◽  
Vol 155 (11) ◽  
pp. 2129-2149
Author(s):  
Ngaiming Mok

We prove the analogue of the Ax–Lindemann–Weierstrass theorem for not necessarily arithmetic lattices of the automorphism group of the complex unit ball $\mathbb{B}^{n}$ using methods of several complex variables, algebraic geometry and Kähler geometry. Consider a torsion-free lattice $\unicode[STIX]{x1D6E4}\,\subset \,\text{Aut}(\mathbb{B}^{n})$ and the associated uniformization map $\unicode[STIX]{x1D70B}:\mathbb{B}^{n}\rightarrow \mathbb{B}^{n}/\unicode[STIX]{x1D6E4}=:X_{\unicode[STIX]{x1D6E4}}$. Given an algebraic subset $S\,\subset \,\mathbb{B}^{n}$ and writing $Z$ for the Zariski closure of $\unicode[STIX]{x1D70B}(S)$ in $X_{\unicode[STIX]{x1D6E4}}$ (which is equipped with a canonical quasi-projective structure), in some precise sense we realize $Z$ as a variety uniruled by images of algebraic subsets under the uniformization map, and study the asymptotic geometry of an irreducible component $\widetilde{Z}$ of $\unicode[STIX]{x1D70B}^{-1}(Z)$ as $\widetilde{Z}$ exits the boundary $\unicode[STIX]{x2202}\mathbb{B}^{n}$ by exploiting the strict pseudoconvexity of $\mathbb{B}^{n}$, culminating in the proof that $\widetilde{Z}\,\subset \,\mathbb{B}^{n}$ is totally geodesic. Our methodology sets the stage for tackling problems in functional transcendence theory for arbitrary lattices of $\text{ Aut}(\unicode[STIX]{x1D6FA})$ for (possibly reducible) bounded symmetric domains $\unicode[STIX]{x1D6FA}$.


Author(s):  
Alireza Salehi Golsefidy ◽  
Xin Zhang

Abstract Let $\Gamma _2\subseteq \Gamma _1$ be finitely generated subgroups of ${\operatorname{GL}}_{n_0}({\mathbb{Z}}[1/q_0])$ where $q_0$ is a positive integer. For $i=1$ or $2$, let ${\mathbb{G}}_i$ be the Zariski-closure of $\Gamma _i$ in $({\operatorname{GL}}_{n_0})_{{\mathbb{Q}}}$, ${\mathbb{G}}_i^{\circ }$ be the Zariski-connected component of ${\mathbb{G}}_i$, and let $G_i$ be the closure of $\Gamma _i$ in $\prod _{p\nmid q_0}{\operatorname{GL}}_{n_0}({\mathbb{Z}}_p)$. In this article we prove that if ${\mathbb{G}}_1^{\circ }$ is the smallest closed normal subgroup of ${\mathbb{G}}_1^{\circ }$ that contains ${\mathbb{G}}_2^{\circ }$ and $\Gamma _2\curvearrowright G_2$ has spectral gap, then $\Gamma _1\curvearrowright G_1$ has spectral gap.


2018 ◽  
Vol 154 (11) ◽  
pp. 2267-2304 ◽  
Author(s):  
Ehud de Shalit ◽  
Eyal Z. Goren

When$p$is inert in the quadratic imaginary field$E$and$m<n$, unitary Shimura varieties of signature$(n,m)$and a hyperspecial level subgroup at$p$, carry a naturalfoliationof height 1 and rank$m^{2}$in the tangent bundle of their special fiber$S$. We study this foliation and show that it acquires singularities at deep Ekedahl–Oort strata, but that these singularities are resolved if we pass to a natural smooth moduli problem$S^{\sharp }$, a successive blow-up of$S$. Over the ($\unicode[STIX]{x1D707}$-)ordinary locus we relate the foliation to Moonen’s generalized Serre–Tate coordinates. We study the quotient of$S^{\sharp }$by the foliation, and identify it as the Zariski closure of the ordinary-étale locus in the special fiber$S_{0}(p)$of a certain Shimura variety with parahoric level structure at$p$. As a result, we get that this ‘horizontal component’ of$S_{0}(p)$, as well as its multiplicative counterpart, are non-singular (formerly they were only known to be normal and Cohen–Macaulay). We study two kinds of integral manifolds of the foliation: unitary Shimura subvarieties of signature$(m,m)$, and a certain Ekedahl–Oort stratum that we denote$S_{\text{fol}}$. We conjecture that these are the only integral submanifolds.


2018 ◽  
Vol 111 (4) ◽  
pp. 379-388 ◽  
Author(s):  
Michele Giacomini

Abstract We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties. We consider the case of non compact Shimura varieties completing the proof of the result for all Shimura varieties. The statement which we consider here was first formulated and proven by Ullmo and Yafaev for compact Shimura varieties.


Sign in / Sign up

Export Citation Format

Share Document