ASEAN Engineering Journal
Latest Publications


TOTAL DOCUMENTS

106
(FIVE YEARS 85)

H-INDEX

1
(FIVE YEARS 1)

Published By Penerbit UTM Press

2586-9159

2021 ◽  
Vol 11 (4) ◽  
pp. 292-310
Author(s):  
Tadele Ergete Tadesse ◽  
Temesgen Wondimu Aure

Steel-Concrete composite shear wall has become popular recently as it compensates for the disadvantages of concrete and steel plate shear walls and combine the advantage of both. However, there is no detail study that identifies the most critical parameters. This study aims at investigation of steel plate-concrete composite shear wall behavior under cyclic loading with variables such as concrete strength, grade of steel plate, total number of tie constraints and thickness of steel plate. ABAQUS/Standard is used for numerical modeling in this study. As the concrete strength decreases from 86.1Mpa to 45Mpa, the load capacity declined by 11.76% and higher stiffness was recorded in specimen with higher grade of concrete. The ductility factor is inversely proportional to grade of concrete from 86.1Mpa to 60Mpa which increases from 4.26 to 4.68 and the ductility factor of specimen with 45Mpa strength is recorded as 3.81. The energy dissipation capacity is directly proportional to the grade of concrete used. Using high grade steel plate increases the lateral load capacity significantly and exhibited more ductile behavior. Specimen with S355 steel grade exhibited 14.01% increment of the average load capacity while the specimen with S245 steel grade has shown reduction by 9.21%. Similarly, the ductility factor and energy dissipation capacity of specimen with variable grade of steel are directly proportional. Reduction of tie constraints has no significant effect on the behavior in this study due to high confinement effect of concrete by surrounding steel plate. Specimens with thicker steel plate exhibited good energy dissipation capacity.


2021 ◽  
Vol 11 (4) ◽  
pp. 266-279
Author(s):  
Tint Lwin ◽  
Takeshi Koike ◽  
Ji Dang

In general, the US codes such as the UBC-97 and ASCE-7 are widely used in developing countries including Myanmar, Syria, Philippines and so on. When the current seismic design guideline based on the UBC-97 and ACI 318-99 in Myanmar is assessed, several problems can be found in the following items: firstly, the fundamental period is not checked in modeling; secondly, reduction factor R is introduced a priori for the base shear estimation. And finally, a limit state assessment is done only for Design Basic Earthquake (DBE) but not for other design earthquakes. As a result, adequate yield strength is not checked for Maximum Operational Earthquake (MOE). Then there is no way to assess the seismic safety of the ultimate limit state for Maximum Considered Earthquake (MCE). In order to solve these problems, a rationalized seismic design method for earthquake prone developing countries is proposed. A new seismic design method is developed for MOE and MCE with adequate yield acceleration and typical period of the building estimated by using pushover analysis. A simplified procedure to estimate the inelastic response for a given design spectrum is also proposed. Finally, this design procedure can provide a rational method to assess the seismic safety for the ultimate limit of the building.


2021 ◽  
Vol 11 (4) ◽  
pp. 280-291
Author(s):  
Yu Yu Maw ◽  
Min Thaw Tun

This paper presents the performance of the diffuser augmented wind turbine (DAWT) with the various diffuser shapes using the numerical investigations. DAWT is also a type of wind turbine and the diffuser shapes, the nozzle shapes and the cylindrical shapes are commonly inserted around the horizontal axis wind turbine (HAWT) to become the more efficient wind turbine. The aim of this study is to find the more efficient design of the diffuser for the horizontal axis wind turbine using the numerical investigations. In this research, the converging and diverging diffuser shape is inserted and the airfoil design is calculated by using the Blade Elementary Momentum Theory. The airfoil type NACA 4412 is chosen because it is suitable for the low wind speed area and easy to produce. The turbulent model k-ω is combined with the Navier Stoke equation to solve the 3-dimensional steady flow simulation of the diffuser augmented wind turbine using the Computational Fluid Dynamics (CFD) simulations. The numerical investigation is used to compare and predict the power coefficient of the DAWT with various shapes. The baseline design of the diffuser (L = 170 mm, H = 57 mm and α = 11̊) is firstly investigated. To predict the power coefficient of the various diffuser shapes, the range of the length of the diffuser is (L/D = 0.5 to 1.5), the range of the brim height of the diffuser (H/D = 0.1 to 0.35) and the range of the angle of the diffuser (α = 5̊ to 15̊ ) are also investigated. The parameters of the diffuser shapes are assigned by using the Central Composite Design Face Centered Method. The response surface method is also used to predict the most efficient diffuser design. The performance of the horizontal axis wind turbine, that of the diffuser augmented wind turbine and that of the diffuser augmented wind turbine with various shapes of diffuser are compared. The performance of new diffuser augmented wind turbine (IND_009) is 50% and 55% higher than the baseline diffuser augmented wind turbine and the horizontal axis wind turbine at rated velocity. The flow visualization of the HAWT, DAWTs are also discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 255-265
Author(s):  
Nguyen Ngoc Tri Huynh ◽  
Tran Anh Tu ◽  
Nguyen Pham Huong Huyen ◽  
Nguyen Khanh Son

Ureolytic bacteria strains of Bacillus show its ability of calcium carbonate precipitation through metabolic activity. Different studies related to self-healing concrete material were reported associated with the generated calcium carbonate of Bacillus subtilis HU58 metabolism in recent communications. In this paper, recent findings of soil cementing with a combination of such precipitated products were presented. The experiments relied on the lab-scale studies with the use of sand-clay mixture as the controlled soil specimens. Bacillus bacteria and nutrients were mixed to introduce in the sand matrix and then curing in high moisture condition. The composition and morphology of soil specimens were characterized after solidifying by FTIR, XRD, and SEM. Water percolation and mechanical stability for the physicomechanical properties were also tested with the unconventional method. Discussing the relevant results can help to figure out the next experiments in the field of geotechnical engineering. From the perspective of this study, the sustainability factor should be considered to apply this promising technique for soil stabilization and improvement and/or for the formulation of bio-brick as an alternative to sintered clay-based brick. From the perspective of this study, this technique for soil stabilization and improvement and/or for the formulation of bio-brick can be considered a promising sustainable alternative to sintered clay-based brick.


2021 ◽  
Vol 11 (4) ◽  
pp. 232-245
Author(s):  
Manar Abd Elhamid ◽  
Tarek Abdelaziz ◽  
Hesham Bassioni

Soil replacement is a common technique that can be used to increase the soil bearing capacity and reduce the expected settlement. The thickness of replacement layer depends on many factors such as: the applied stress, original soil properties, material of replacement layer and the cost of foundation works. However, until now the practical thickness of replacement is usually selected based on soil experts’ experience. This study proposed an optimization model to assist geotechnical engineers in predicting the optimum thickness and material type of replacement layer that satisfy the main design requirements, i.e. bearing capacity, consolidation settlement and cost considerations at the same time. The Evolutionary solving method that uses a variety of genetic algorithm and local search methods was used to solve the research problem. Furthermore, the effect of the thickness and properties of clay layer and the depth of ground water table on determining optimum type and thickness of replacement soil were investigated. The study evaluated the relationship between the replacement layer thickness and the total direct cost of foundation works and found that, the notion of increasing replacement thickness to decrease cost limitlessly was not viable and an optimal thickness was usually achieved.


2021 ◽  
Vol 11 (4) ◽  
pp. 246-254
Author(s):  
Jabosar Ronggur Hamonangan Panjaitan ◽  
Misri Gozan

Nitrocellulose is a cellulose derivative that has many potential applications. Nitrocellulose can bemade through nitration reactions by reacting cellulose and nitric acid at low temperatures. Cellulose can be obtained from lignocellulose biomass such as palm oil empty fruit bunches (POEFBs). In this study, techno-economic evaluation of nitrocellulose production from POEFBs was investigated with various types of alkaline and acid pretreatments. Pretreatment of POEFBs with alkaline and acid was used to purify cellulose fraction as raw material for nitrocellulose. The combination process of POEFBs pretreatment with alkaline and acid can be classified into 4 process routes such as ammonium hydroxide and sulfuric acid pretreatment (Route-1), ammonium hydroxide and acetic acid pretreatment (Route-2), sodium hydroxide and sulfuric acid pretreatment (Route-3), and sodium hydroxide and acetic acid pretreatment (Route-4). The results showed that ammonium hydroxide and sulfuric acid pretreatment (Route-1) was the most profitable route to produce nitrocellulose. Economic parameter values such as return of investment (ROI), payback period (PBP), net present value (NPV) and internal rate of return (IRR) from ammonium hydroxide and sulfuric acid pretreatment (Route-1) were 11.49%, 5.85 years, US$ 442,427 and 13.35%.


2021 ◽  
Vol 11 (4) ◽  
pp. 204-231
Author(s):  
Ali Mahmoud ◽  
Xiaohui Yuan

A rockfill dam's quality and its economic aspects are inextricably interwoven with each other. Approaching the optimal design of a rockfill dam paves the path to achieve the best quality with the fewest expenses. Choosing the Sardasht rockfill dam as a case study, two semi-empirical models are presented for seepage and safety factor. These two models, together with construction costs, were employed as three objective functions for the Sardasht rockfill dam's shape optimization. Optimization was handled using a robust multi-objective particle swarm optimization algorithm (RCR-MOPSO). A new reproducing method inspired by a Rubik's cube shape (RCR) and NSGA-III are building blocks of RCR-MOPSO. Three benchmark problems and two real-world problems were solved using RCR-MOPSO and compared with NSGA-III and MOPSO to ensure the performance of RCR-MOPSO. The solution quality and performance of RCR-MOPSO are significantly better than the original MOPSO and close to NSGA-III. Nevertheless, RCR-MOPSO recorded a 38% shorter runtime than NSGA-III. RCR-MOPSO presented a set of non-dominated solutions as final results for the Sardasht rockfill dam shape optimization. Due to the defined constraints, all solutions dominate the original design. Regarding the final results, compared with Sardasht dam's original design, the construction price was reduced by 31.12% on average, while seepage and safety factor improved by 15.84% and 27.78% on average, respectively.


2021 ◽  
Vol 11 (4) ◽  
pp. 70-79
Author(s):  
Dino Dominic Forte Ligutan ◽  
Argel Alejandro Bandala ◽  
Jason Limon Española ◽  
Richard Josiah Calayag Tan Ai ◽  
Ryan Rhay Ponce Vicerra ◽  
...  

The development of a novel 3D-printed three-claw robotic gripper shall be described in this paper with the goal of incorporating various design considerations. Such considerations include the grip reliability and stability, grip force maximization, wide object grasping capability. Modularization of its components is another consideration that allows its parts to be easily machined and reusable. The design was realized by 3D printing using a combination of tough polylactic acid (PLA) material and thermoplastic polyurethane (TPU) material. In practice, additional tolerances were also considered for 3D printing of materials to compensate for possible expansion or shrinkage of the materials used to achieve the required functionality. The aim of the study is to explore the design and eventually deploy the three-claw robotic gripper to an actual robotic arm once its metal work fabrication is finished.


2021 ◽  
Vol 11 (4) ◽  
pp. 80-88
Author(s):  
Muzakkir Mohammad Zainol ◽  
Nurul Suhada Ab Rasid ◽  
Mohd Asmadi ◽  
Nor Aishah Saidina Amin

The synthesis of carboxymethyl cellulose (CMC) generally uses isolated crude cellulose with alkaline or acid pretreatment followed by bleaching with sodium chlorite. In this study, the simple [BMIM][Cl] ionic liquid was used as a solvent in the pretreatment process before conduct the bleaching process with hydrogen peroxide (H2O2) to isolate cellulose from empty fruit bunch (EFB) for further synthesis of CMC. The isolated crude EFB cellulose obtained was converted to CMC by adding 30 wt.% NaOH and various concentrations of sodium monochloroacetic acid (SMCA) at 55 °C for 3 h. The effects of SMCA concentration on the degree of substitution (DS) and CMC yield were investigated. The physicochemical properties of the CMC products were characterized using proton nuclear magnetic resonance, scanning electron microscope-energy dispersive spectrometry, X-ray diffraction, and thermogravimetric analysis. Based on the results, CMC was demonstrated to be synthesized using ionic liquid pretreatment with H2O2 bleaching. Carboxymethyl cellulose synthesized in this study showed a high DS of 0.82. The CMC synthesized from EFB cellulose through ionic liquid pretreatment presented good chemical and physical properties as that reported in other studies.


2021 ◽  
Vol 11 (4) ◽  
pp. 179-203
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Facilities and buildings installed nearby high voltage equipment and electric field exposure is always a serious threat to the health of organisms and can have a significant impact on the functioning of sensitive and vital organs such as the heart and brain. Therefore, it is necessary to study the electromagnetic field value in these areas to control the intensity and restrict the induced value regarding to international recommendations. In this paper, the effects of 230KV transmission line electric fields on the environment are examined by proper FEM software.The model under consideration in this project is a four story building adjacent to the 230KV transmission line.At first, the distance between the building and high voltage transmission lines and its relationship to the intensity of the electric field is examined, and then the intensity of the electric field is compared to the standards of the International Commission on Non Ionizing Radiation Protection (ICNIRP). To continue, in places where the electric field exceeds the standard level value, solutions to reduce the intensity of the electric field to the tolerable value have been proposed.The first solution is to use a metal shield around the building as a Faraday cage, which weakens the potential for electric field value by creating an enclosed surface, the reduction rate is 4700%,both complete cage shape and incomplete cage shapes are considered in this study which reduces the exposure value to 62.5% of its initial value. The second approach to reducing the electric field is to use protective conductor paints against electromagnetic fields. In the following study, the effect of using trees as a barrier against electromagnetic radiation will be examined. Finally, the three proposed solutions are compared in terms of environmental constraints, economic justification, and the reduction in electric field value.


Sign in / Sign up

Export Citation Format

Share Document