Scientific Contributions Oil and Gas
Latest Publications


TOTAL DOCUMENTS

109
(FIVE YEARS 55)

H-INDEX

0
(FIVE YEARS 0)

Published By LEMIGAS RD Center For Oil And Gas Technology

2541-0520, 2089-3361

2021 ◽  
Vol 44 (2) ◽  
pp. 83-93
Author(s):  
Steven Chandra ◽  
Prasandi Abdul Aziz ◽  
Muhammad Raykhan Naufal ◽  
Wijoyo Niti Daton

The most of today's global oil production comes from mature fields. Oil companies and governments are both concerned about increasing oil recovery from aging resources. To maintain oil production, the mature field must apply the Enhanced Oil Recovery method.  water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during  injection with the injected water to control the mobility of . This study will discuss possible corrosion during  and water injection and the casing load calculation along with the production tubing during the injection phase. The following study also performed a suitable material selection for the best performance injection. This research was conducted by evaluating casing integrity for simulate  water-alternating-gas (WAG) to be applied in the X-well in the Y-field, South Sumatra, Indonesia. Corrosion prediction were performed using Electronic Corrosion Engineer (ECE®) corrosion model and for the strength of tubing which included burst, collapse, and tension of production casing was assessed using Microsoft Excel. This study concluded that for the casing load calculation results in 600 psi of burst pressure, collapse pressure of 2,555.64 psi, and tension of 190,528 lbf. All of these results are still following the K-55 production casing rating. While injecting , the maximum corrosion rate occurs. It has a maximum corrosion rate of 2.02 mm/year and a minimum corrosion rate of 0.36 mm/year. With this value, it is above NORSOK Standard M-001 which is 2 mm/year and needs to be evaluated to prevent the rate to remain stable and not decrease in the following years. To prevent the effect of maximum corrosion rate, the casing material must use a SM13CR (Martensitic Stainless Steel) which is not sour service material.


2021 ◽  
Vol 44 (2) ◽  
pp. 97-106
Author(s):  
Usman Usman ◽  
Dadan DSM Saputra ◽  
Nurus Firdaus

The carbon capture utilization and storage (CCUS) referred in this paper is limited to the use of CO2 to the enhanced oil recovery (CO2-EOR). The CCUS CO2-EOR technology can magnify oil production substantially while a consistent amount of the CO2 injected remains sequestrated in the reservoir, which is beneficial for reducing the greenhouse gas emission. Therefore, this technology is a potentially attractive win-win solution for Indonesia to meet the goal of improved energy supply and security, while also reducing CO2 emissions over the long term. The success of CCUS depends on the proper sources-sinks matching. This paper presents a systematic approach to pairing the CO2 captured from industrial activities with suitable oil fields for CO2-EOR. Inventories of CO2 sources and oil reservoirs were done through survey and data questionnaires. The process of sources-sinks matching was preceded by identifying the CO2 sources within the radius of 100 and 200 km from each oil field and clustering the fields within the same radius from each CO2 source. Each cluster is mapped on the GIS platform included existing and planning right of way for trunk pipelines. Pairing of source-sink are ranked to identify high priority development. Results of this study should be interest to project developers, policymakers, government agencies, academicians, civil society and environmental non-governmental organization in order to enable them to assess the role of CCUS CO2-EOR as a major carbon management strategy.


2021 ◽  
Vol 44 (2) ◽  
pp. 141-152
Author(s):  
Kamal Hamzah ◽  
Amega Yasutra ◽  
Dedy Irawan

Hydraulic fracturing has been established as one of production enhancement methods in the petroleum industry. This method is proven to increase productivity and reserves in low permeability reservoirs, while in medium permeability, it accelerates production without affecting well reserves. However, production result looks scattered and appears to have no direct correlation to individual parameters. It also tend to have a decreasing trend, hence the success ratio needs to be increased. Hydraulic fracturing in the South Sumatra area has been implemented since 2002 and there is plenty of data that can be analyzed to resolve the relationship between actual production with reservoir parameters and fracturing treatment. Empirical correlation approach and machine learning (ML) methods are both used to evaluate this relationship. Concept of Darcy's equation is utilized as basis for the empirical correlation on the actual data. The ML method is then applied to provide better predictions both for production rate and water cut. This method has also been developed to solve data limitations so that the prediction method can be used for all wells. Empirical correlation can gives an R2 of 0.67, while ML can gives a better R2 that is close to 0.80. Furthermore, this prediction method can be used for well candidate selection means.


2021 ◽  
Vol 44 (2) ◽  
pp. 123-139
Author(s):  
KRT Nur Suhascaryo ◽  
Endah Wahyurini ◽  
Yuan Cahyo Guntoro

Shale is one of the rocks that often causes drilling problems because shale tends to swell or swell when in contact with mud filtrate, mainly Water-base Mud (WBM). This study aims to determine how the performance of Oil-base Mud (OBM) based on Crude Coconut Oil (CCO) in overcoming the swelling problem. The methodology used consists of drilling simulation and cutting analysis in the X-Ray Diffraction (XRD) laboratory. The series of activities in the study began with the preparation of rock layers, followed by testing the penetration rate using Water-base Mud as a comparison. After cutting analysis was carried out in the XRD laboratory of UPN “Veteran” Yogyakarta with the Rigaku tool, then replaced the type of drilling fluid Oil-base Mud with basic materials alternative to Crude Coconut Oil (CCO) and followed by a penetration test. Rate of Penetration (ROP) test results from WBM with Rheology 1 at interval A or a depth of 1.96 ft-4.92 ft is 442.8 ft/h, Rheology 2 at interval B or a depth of 4.92-10.5 ft is 118.5 ft/hr on the first day. Swelling occurred and results in pipe sticking at depth of 6.5 ft. Based on the Bulk Mineral analysis, clay mineral content is 23.84%. Based on the Clay Oriented, smectite dominates the clay by 29.09%. Based on MBT, shale belongs to class B (illite and mixed-layer montmorillonite illite), where this mineral can expand. Based on a Geonor As test, 5.18% of the cutting can develop when exposed to water. The drilling fluid was replaced with Oil-base Mud based on alternative Crude Coconut Oil (CCO), and obtained ROP Rheology 1 at Interval A of 492 ft/h and Rheology 2 at Interval B of 480 ft/h. The results of the Compressive Strength test interval A on the first, third, and fifth days were 31,699 psi, 42,265 psi, and 52,831 psi. The results of the Compressive Strength test interval B on the first, second, and third days were 31,496 psi, 41,517 psi, and 52,971 psi. Based on clay mineral analysis and magnitude of ROP value, is known that Crude Coconut Oil (CCO) based Oil-base Mud is effective because during the simulation, there are no drilling problems, and the resulting ROP value is greater than the first day Water-base Mud.


2021 ◽  
Vol 44 (2) ◽  
pp. 83-95
Author(s):  
Agus M. Ramdhan

In situ stress is importance in the petroleum industry because it will significantly enhance our understanding of present-day deformation in a sedimentary basin. The Northeast Java Basin is an example of a tectonically active basin in Indonesia. However, the in situ stress in this basin is still little known. This study attempts to analyze the regional in situ stress (i.e., vertical stress, minimum and maximum horizontal stresses) magnitude and orientation, and stress regime in the onshore part of the Northeast Java Basin based on twelve wells data, consist of density log, direct/indirect pressure test, and leak-off test (LOT) data. The magnitude of vertical (  and minimum horizontal (  stresses were determined using density log and LOT data, respectively. Meanwhile, the orientation of maximum horizontal stress  (  was determined using image log data, while its magnitude was determined based on pore pressure, mudweight, and the vertical and minimum horizontal stresses. The stress regime was simply analyzed based on the magnitude of in situ stress using Anderson’s faulting theory. The results show that the vertical stress ( ) in wells that experienced less erosion can be determined using the following equation: , where  is in psi, and z is in ft. However, wells that experienced severe erosion have vertical stress gradients higher than one psi/ft ( . The minimum horizontal stress ( ) in the hydrostatic zone can be estimated as, while in the overpressured zone, . The maximum horizontal stress ( ) in the shallow and deep hydrostatic zones can be estimated using equations: and , respectively. While in the overpressured zone, . The orientation of  is ~NE-SW, with a strike-slip faulting stress regime.


2021 ◽  
Vol 44 (2) ◽  
pp. 153-159
Author(s):  
Ainuddin Ainuddin ◽  
Muhammad Adam Suryadilaga

As a source of energy, industrial raw materials, and foreign exchange for exports, the oil and gas sub-sector has a strategic role in national development. In the period 2020-2024, the management and utilization of oil and gas resources will face several challenges. The purpose of this study is to determine the profile of oil and gas development. The method used and the description in the data is qualitative. The results of this study allow us to statistically understand cluster dynamics. The impact of this research is to map the dynamics of oil and gas as a whole. 


2021 ◽  
Vol 44 (2) ◽  
pp. 107-121
Author(s):  
Steven Chandra ◽  
Prasandi A Aziz ◽  
Muhammad Raykhan Naufal ◽  
Wijoyo Niti Daton

The most of today's global oil production comes from mature fields. Oil companies and governments are both concerned about increasing oil recovery from aging resources. To maintain oil production, the mature field must apply the Enhanced Oil Recovery method.  water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during  injection with the injected water to control the mobility of . This study will discuss possible corrosion during  and water injection and the casing load calculation along with the production tubing during the injection phase. The following study also performed a suitable material selection for the best performance injection. This research was conducted by evaluating casing integrity for simulate  water-alternating-gas (WAG) to be applied in the X-well in the Y-field, South Sumatra, Indonesia. Corrosion prediction were performed using Electronic Corrosion Engineer (ECE®) corrosion model and for the strength of tubing which included burst, collapse, and tension of production casing was assessed using Microsoft Excel. This study concluded that for the casing load calculation results in 600 psi of burst pressure, collapse pressure of 2,555.64 psi, and tension of 190,528 lbf. All of these results are still following the K-55 production casing rating. While injecting , the maximum corrosion rate occurs. It has a maximum corrosion rate of 2.02 mm/year and a minimum corrosion rate of 0.36 mm/year. With this value, it is above NORSOK Standard M-001 which is 2 mm/year and needs to be evaluated to prevent the rate to remain stable and not decrease in the following years. To prevent the effect of maximum corrosion rate, the casing material must use a SM13CR (Martensitic Stainless Steel) which is not sour service material.


2021 ◽  
Vol 44 (1) ◽  
pp. 21-37
Author(s):  
Herru Lastiadi Setiawan ◽  
Suliantara Suliantara ◽  
Bambang Widarsono

Heavy oil is formed through biodegradation process of hydrocarbons, as well as water washing, in which light hydrocarbon fraction disappears and leaves the heavy fraction. Heavy oil is essentially an asphaltic, dense (low API gravity), and viscous that is chemically characterized by its high content of asphaltenes in the oil. Although variously defi ned, 25o API is set the upper limit for heavy oil. Heavy oil in the Central Sumatra Basin is evidently formed as a result of biodegradation and water washing (a hydrodynamic process within oil reservoir) mechanisms. These processes occur as result of tectonic uplift of the reservoir after it has been fi lled with hydrocarbons. Heavy oil reservoir depths in the Central Sumatra Basin are generally shallower than 1,000 feet (300-400 meters), at which surface water may may be associated with the reservoir hence enabling the heavy oil transformation. A combined geology, remote sensing/geographic information system ( GIS), geophysics, stratigraphy, and wellbased analyses is utilized to serve the study. It has been observed that within the northern part of the basin, heavy oil is mainly found in fi elds located within uphill fault blocks such as the up-thrown part of the Sebanga thrust fault with its Duri, Sebanga North, Kulin, Rantau Bais, Batang, Akar, and Genting fi elds. In the western part of the basin there are the Kumis, Kotalama and Pendalian heavy oil fi elds associated with Dalu-Dalu thrust fault and Gadang Island uplift. In total 51 fi elds/structures containing or suspected to contain heavy oil are associated with uplifted geological positions, hence showing the strong relations between tectonic evolutions and present day presence of heavy oil within the basin.


2021 ◽  
Vol 44 (1) ◽  
pp. 39-54
Author(s):  
Suliantara Suliantara ◽  
Tri Muji Susantoro ◽  
Herru Lastiadi Setiawan ◽  
Nurus Firdaus

Heavy oil which is classifi ed as non conventional oil is the target of exploration in the world. In Indonesia, the potential for heavy oil exploration is quite large, especially in the Central Sumatra basin. This study aims to map the location of potential heavy oil based on remote sensing data and regional gravity data supported by a geographic information system. Landsat 8 OLI satellite data is processed to produce 567 (RGB) color composite images, then further processing is carried out with DEM data to produce fusion images; mapping the vegetation index, clay mineral index, iron oxide index, surface temperature. The gravity data is used for mapping subsurface geological structures. Overlay analysis is carried out on the results of remote sensing data processing and interpretation of surface and subsurface geology. Based on the analysis, it shows that heavy oil fi elds are generally found on the surface and subsurface structures which are relatively identical and located on the edge of the basement high. Based on this analysis, the locations that have the potential for heavy oil and gas traps are on the northeast edge, Dalu-dalu High, the edge of Kampar High, the west edge of Kuantan High, the southwest edge of the Beruk High, the southwest edge of the Sembilan High.


2021 ◽  
Vol 44 (1) ◽  
pp. 55-63
Author(s):  
Jonathan Setyoko Hadimuljono ◽  
Nurus Firdaus

It is commonly known that heavy oil is mostly formed through biodegradation process within reservoir or on the surface both by aerobic and/or anaerobic bacteria that can live under specfi c temperature level(s). In order to investigate heavy oil occurences in Central Sumatra Basin, eff orts have been spent to determine the depths that represent the maximum temperature. By integrating the maximum viable temperature of typical bacteria and temperature gradient data, the depth of heavy oil zone is determined. The work is a combination of establishment of geothermal gradient map and laboratory analysis on fi eld sampled oil for determining types and temperature characteristics of microorganism living in the samples. Heavy oil sampling is made on seepages in areas nearby Minas fi eld. Subsequent laboratory analysis reveals Burkholderia multivorans ATCC BAA-247 as the predominant bacteria having maximum viabl temperature of 60° C. Based on the established geothermal gradient map, this maximum temperature correspond to average depth of 1818 ft (555.5 m). This average depth is used as the lower depth for the biodegradation zone over which investigation over presence of heavy oil bearing reservoirs/traps is made.


Sign in / Sign up

Export Citation Format

Share Document