scholarly journals FINITENESS OF LOG MINIMAL MODELS AND NEF CURVES ON -FOLDS IN CHARACTERISTIC

2018 ◽  
Vol 239 ◽  
pp. 76-109
Author(s):  
OMPROKASH DAS

In this article, we prove a finiteness result on the number of log minimal models for 3-folds in $\operatorname{char}p>5$. We then use this result to prove a version of Batyrev’s conjecture on the structure of nef cone of curves on 3-folds in characteristic $p>5$. We also give a proof of the same conjecture in full generality in characteristic 0. We further verify that the duality of movable curves and pseudo-effective divisors hold in arbitrary characteristic. We then give a criterion for the pseudo-effectiveness of the canonical divisor $K_{X}$ of a smooth projective variety in arbitrary characteristic in terms of the existence of a family of rational curves on $X$.

Author(s):  
Lie Fu ◽  
Robert Laterveer ◽  
Charles Vial

AbstractGiven a smooth projective variety, a Chow–Künneth decomposition is called multiplicative if it is compatible with the intersection product. Following works of Beauville and Voisin, Shen and Vial conjectured that hyper-Kähler varieties admit a multiplicative Chow–Künneth decomposition. In this paper, based on the mysterious link between Fano varieties with cohomology of K3 type and hyper-Kähler varieties, we ask whether Fano varieties with cohomology of K3 type also admit a multiplicative Chow–Künneth decomposition, and provide evidence by establishing their existence for cubic fourfolds and Küchle fourfolds of type c7. The main input in the cubic hypersurface case is the Franchetta property for the square of the Fano variety of lines; this was established in our earlier work in the fourfold case and is generalized here to arbitrary dimension. On the other end of the spectrum, we also give evidence that varieties with ample canonical class and with cohomology of K3 type might admit a multiplicative Chow–Künneth decomposition, by establishing this for two families of Todorov surfaces.


2010 ◽  
Vol 10 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Indranil Biswas ◽  
João Pedro P. Dos Santos

AbstractLet X be a smooth projective variety defined over an algebraically closed field k. Nori constructed a category of vector bundles on X, called essentially finite vector bundles, which is reminiscent of the category of representations of the fundamental group (in characteristic zero). In fact, this category is equivalent to the category of representations of a pro-finite group scheme which controls all finite torsors. We show that essentially finite vector bundles coincide with those which become trivial after being pulled back by some proper and surjective morphism to X.


1995 ◽  
Vol 118 (1) ◽  
pp. 183-188
Author(s):  
Qi Zhang

Let X be a smooth projective variety of dimension n over the field of complex numbers. We denote by Kx the canonical bundle of X. By Mori's theory, if Kx is not numerically effective (i.e. if there exists a curve on X which has negative intersection number with Kx), then there exists an extremal ray ℝ+[C] on X and an elementary contraction fR: X → Y associated with ℝ+[C].fR is called a small contraction if it is bi-rational and an isomorphism in co-dimension one.


2018 ◽  
Vol 2020 (7) ◽  
pp. 1942-1956
Author(s):  
Davide Lombardo ◽  
Andrea Maffei

Abstract We determine which complex abelian varieties can be realized as the automorphism group of a smooth projective variety.


2018 ◽  
Vol 2019 (19) ◽  
pp. 6089-6112
Author(s):  
Shu Kawaguchi ◽  
Kazuhiko Yamaki

Abstract Let R be a complete discrete valuation ring of equi-characteristic zero with fraction field K. Let X be a connected smooth projective variety of dimension d over K, and let L be an ample line bundle over X. We assume that there exist a regular strictly semistable model ${\mathscr {X}}$ of X over R and a relatively ample line bundle ${\mathscr {L}}$ over ${\mathscr {X}}$ with $\left .{{\mathscr {L}}}\right \vert_{{X}} \cong L$. Let $S({\mathscr {X}})$ be the skeleton associated to ${\mathscr {X}}$ in the Berkovich analytification Xan of X. In this article, we study when $S({\mathscr {X}})$ is faithfully tropicalized into tropical projective space by the adjoint linear system |L⊗m ⊗ ωX|. Roughly speaking, our results show that if m is an integer such that the adjoint bundle is basepoint free, then the adjoint linear system admits a faithful tropicalization of $S({\mathscr {X}})$.


Author(s):  
Naoki Koseki

Abstract Let $f \colon X \to Y$ be the blow-up of a smooth projective variety $Y$ along its codimension two smooth closed subvariety. In this paper, we show that the moduli space of stable sheaves on $X$ and $Y$ are connected by a sequence of flip-like diagrams. The result is a higher dimensional generalization of the result of Nakajima and Yoshioka, which is the case of $\dim Y=2$. As an application of our general result, we study the birational geometry of the Hilbert scheme of two points.


2019 ◽  
Vol 155 (7) ◽  
pp. 1444-1456
Author(s):  
Sho Ejiri ◽  
Yoshinori Gongyo

We study the Iitaka–Kodaira dimension of nef relative anti-canonical divisors. As a consequence, we prove that given a complex projective variety with klt singularities, if the anti-canonical divisor is nef, then the dimension of a general fibre of the maximal rationally connected fibration is at least the Iitaka–Kodaira dimension of the anti-canonical divisor.


Author(s):  
Mihai Fulger

Abstract We develop a local positivity theory for movable curves on projective varieties similar to the classical Seshadri constants of nef divisors. We give analogues of the Seshadri ampleness criterion, of a characterization of the augmented base locus of a big and nef divisor, and of the interpretation of Seshadri constants as an asymptotic measure of jet separation. As application, we show in any characteristic that if $C$ is a smooth curve with ample normal bundle in a smooth projective variety then the class of $C$ is in the strict interior of the Mori cone. This was conjectured by Peternell and proved by Ottem and Lau in Characteristic 0.


Sign in / Sign up

Export Citation Format

Share Document