The spin -function on for Siegel modular forms
Keyword(s):
We give a Rankin–Selberg integral representation for the Spin (degree eight) $L$-function on $\operatorname{PGSp}_{6}$ that applies to the cuspidal automorphic representations associated to Siegel modular forms. If $\unicode[STIX]{x1D70B}$ corresponds to a level-one Siegel modular form $f$ of even weight, and if $f$ has a nonvanishing maximal Fourier coefficient (defined below), then we deduce the functional equation and finiteness of poles of the completed Spin $L$-function $\unicode[STIX]{x1D6EC}(\unicode[STIX]{x1D70B},\text{Spin},s)$ of $\unicode[STIX]{x1D70B}$.
1997 ◽
Vol 147
◽
pp. 71-106
◽
2002 ◽
Vol 65
(2)
◽
pp. 239-252
◽
Keyword(s):
Keyword(s):
Keyword(s):
2019 ◽
Vol 15
(10)
◽
pp. 2107-2114