A Complete Stochastic Wiring Distribution for Gigascale Integration (GSI)

1996 ◽  
Vol 427 ◽  
Author(s):  
Jeffrey A. Davis ◽  
John C. Eble ◽  
Vivek K. De ◽  
James D. Meindl

AbstractBased on Rent's Rule, a well established empirical relationship, a rigorous derivation of a complete wire length distribution for on-chip random logic networks is performed. The distribution is then used to describe an optimal architecture for a multilevel wiring network that provides maximum interconnect density and minimum chip size for a ULSI system. In addition, this new distribution has been incorporated into a Generic System Simulator (GENESYS), that projects overall performance of future ULSI systems. Assuming various interconnect materials such as copper, aluminum, silicon dioxide, and low dielectric polymers, GENESYS has been used to examine the effects that each material has on overall performance of ASIC's over the next 15 years.

1997 ◽  
Vol 473 ◽  
Author(s):  
J. A. Davis ◽  
J. D. Meindl

ABSTRACTOpportunities for Gigascale Integration (GSI) are governed by a hierarchy of physical limits. The levels of this hierarchy have been codified as: 1) fundamental, 2) material, 3) device, 4) circuit and 5) system. Many key limits at all levels of the hierarchy can be displayed in the power, P, versus delay, td, plane and the reciprocal length squared, L-2, versus response time, τ, plane. Power, P, is the average power transfer during a binary switching transition and delay, td, is the time required for the transition. Length, L, is the distance traversed by an interconnect that joins two nodes on a chip and response time, τ, characterizes the corresponding interconnect circuit. At the system level of the hierarchy, quantitative definition of both the P versus td and the L-2 versus τ displays requires an estimate of the complete stochastic wiring distribution of a chip.Based on Rent's Rule, a well known empirical relationship between the number of signal input/output terminals on a block of logic and the number of gate circuits with the block, a rigorous derivation of a new complete stochastic wire length distribution for an on-chip random logic network is described. This distribution is compared to actual data for modern microprocessors and to previously described distributions. A methodology for estimating the complete wire length distribution for future GSI products is proposed. The new distribution is then used to enhance the critical path model that determines the maximum clock frequency of a chip; to derive a preliminary power dissipation model for a random logic network; and, to define an optimal architecture of a multilevel interconnect network that minimizes overall chip size. In essence, a new complete stochastic wiring distribution provides a generic basis for maximizing the value obtained from a multilevel interconnect technology.


2006 ◽  
Vol 970 ◽  
Author(s):  
Manabu Bonkohara ◽  
Makoto Motoyoshi ◽  
Kazutoshi Kamibayashi ◽  
Mitsumasa Koyanagi

ABSTRACTRecently the development of three dimensional LSI (3D-LSI) has been accelerated and its stage has changed from the research level or limited production level to the investigation level with a view to mass production. This paper describes the current and the future 3D-LSI technologies which we have considered and imagined. The current technology is taken our Chip Size Package (CSP) for sensor device, for instance. In the future technology, there are the five key technologies are described. And considering con and pro of the current 3D LSI stacked approach, such as CoC (Chip on Chip), CoW (Chip on Wafer) and WoW (Wafer on Wafer), We confirmed that CoW combined with Super-Smart-Stack (SSS™) technology will shorten the process time per chip at the same level as WoW approach and is effective to minimize process cost.


Author(s):  
Alireza Pourhassan ◽  
Ahmed A. Gheni ◽  
Mohamed A. ElGawady

<p>A common defect of chip seals is chip loss or raveling. The previous studies showed uniform grading of aggregate will enhance the retention ability of the chip seal. Also, it was shown that using crumb rubber as an aggregate will enhance the chip seal behavior including aggregate retention. However, no specific study has been done focusing on the effect of aggregate size for rubber nor natural aggregate. This paper is evaluating the effect of chip size on aggregate retention of both natural and rubber aggregate. Standard and modified Vialit tests, and standard and modified Pennsylvania tests which apply different forms of mechanical energy in different temperature was used to assess the aggregate-binder bond interaction and study the chip seal retention. Test results showed different trends for the effect of size on chip retention under impact load versus dynamic load because of different modes of failure. However, rubber particles showed a superior performance rather than natural aggregate in all cases.</p>


2017 ◽  
Vol 7 (1.3) ◽  
pp. 69
Author(s):  
M. Ramana Reddy ◽  
N.S Murthy Sharma ◽  
P. Chandra Sekhar

The proposed work shows an innovative designing in TSMC 130nm CMOS technology. A 2.4 GHz common gate topology low noise amplifier (LNA) using an active inductor to attain the low power consumption and to get the small chip size in layout design. By using this Common gate topology achieves the noise figure of 4dB, Forward gain (S21) parameter of 14.7dB, and the small chip size of 0.26 mm, while 0.8mW power consuming from a 1.1V in 130nm CMOS gives the better noise figure and improved the overall performance.


Author(s):  
Hideo Koguchi ◽  
Atsushi Ueno

In this study, a simple theory for estimating the warpage of chip size packaging (CSP) during a manufacturing process is presented. A single-sided CSP which is composed of IC, a resin and a substrate is modeled for an analysis as a three-layered material. Especially, the resin and the substrate have different thermo-viscoelastic properties. When the layered body is perfectly bonded, its warpage is caused by the difference of the thermal expansion coefficient in each layer when temperature varies. The warpage of CSP for a various thicknesses of the IC and the substrate is investigated. Finally, the warpage calculated using the theory is compared with the result in experiment, and both results are well agreed with each other. Then, it is shown that the simple theoretical analysis is valid. After that, this program is extended to be able to analyze the warpage in a CoC (Chip on Chip), and the result of the analysis is then presented.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1210
Author(s):  
Hanh Dang-ba ◽  
Gyung-su Byun

In this paper, a sub-THz wireless power transfer (WPT) interface for non-contact wafer-level testing is proposed. The on-chip sub-THz couplers, which have been designed and analyzed with 3-D EM simulations, could be integrated into the WPT to transfer power through an air media. By using the sub-THz coils, the WPT occupies an extremely small chip size, which is suitable for future wafer-testing applications. In the best power transfer efficiency (PTE) condition of the WPT, the maximum power delivery is limited to 2.5 mW per channel. However, multi-channel sub-THz WPT could be a good solution to provide enough power for testing purposes while remaining high PTE. Simulated on a standard 28-nm CMOS technology, the proposed eight-channel WPT could provide 20 mW power with the PTE of 16%. The layouts of the eight-channel WPT transmitter and receiver occupy only 0.12 mm2, 0.098 mm2, respectively.


2013 ◽  
Vol 849 ◽  
pp. 302-309
Author(s):  
Yun Xu ◽  
Xin Hua Zhu ◽  
Yu Wang

With rapid development of micro fabrication technology, the performance of MIMU has gradually improved. The MIMU introduced in this paper is based on the silicon micro machined gyroscope of type MSG7000D and accelerometer of type MSA6000. The volume of it is 3×3×3cm3, the mass is 68.5g and the power consumption is less than 1w. The experimental result shows that the bias stability of the gyroscope and accelerometer for each axis of the designed MIMU is less than 10°/h and 0.5mg respectively. For the non orthogonality in three axes of the structure, MIMU needs to be calibrated. After calibration, the measurement accuracy has improved by an order of magnitude. The designed MIMU can satisfy the requirement of high performance, low cost, light weight and small size for strap-down navigation system, thus it can be widely applied not only to the field of vehicles integrated navigation, attitude measurement but also to the fields of personal goods such as mobile, game consoles and so on.


Sign in / Sign up

Export Citation Format

Share Document