LOGICS ABOVE S4 AND THE LEBESGUE MEASURE ALGEBRA

2016 ◽  
Vol 10 (1) ◽  
pp. 51-64
Author(s):  
TAMAR LANDO

AbstractWe study the measure semantics for propositional modal logics, in which formulas are interpreted in the Lebesgue measure algebra${\cal M}$, or algebra of Borel subsets of the real interval [0,1] modulo sets of measure zero. It was shown in Lando (2012) and Fernández-Duque (2010) that the propositional modal logic S4 is complete for the Lebesgue measure algebra. The main result of the present paper is that every logic L aboveS4 is complete for some subalgebra of ${\cal M}$. Indeed, there is a single model over a subalgebra of ${\cal M}$ in which all nontheorems of L are refuted. This work builds on recent work by Bezhanishvili, Gabelaia, & Lucero-Bryan (2015) on the topological semantics for logics above S4. In Bezhanishvili et al., (2015), it is shown that there are logics above that are not the logic of any subalgebra of the interior algebra over the real line, ${\cal B}$(ℝ), but that every logic above is the logic of some subalgebra of the interior algebra over the rationals, ${\cal B}$(ℚ), and the interior algebra over Cantor space, ${\cal B}\left( {\cal C} \right)$.

1957 ◽  
Vol 53 (2) ◽  
pp. 312-317 ◽  
Author(s):  
Trevor J. Mcminn

1. Introduction. Let 0 < λ < 1 and remove from the closed unit interval the open interval of length λ concentric with the unit interval. From each of the two remaining closed intervals of length ½(1 − λ) remove the concentric open interval of length ½λ(1 − λ). From each of the four remaining closed intervals of length ¼λ(1 − λ)2 remove the concentric open interval of length ¼λ(l − λ)2, etc. The remaining set is a perfect non-dense set of Lebesgue measure zero and is the Cantor set for λ = ⅓. Let Tλr be the Cartesian product of this set with the set similar to it obtained by magnifying it by a factor r > 0. Letting L be Carathéodory linear measure (1) and letting G be Gillespie linear square(2), Randolph(3) has established the following relations:


1996 ◽  
Vol 61 (1) ◽  
pp. 246-249 ◽  
Author(s):  
Marion Scheepers

Let denote the ideal of Lebesgue measure zero subsets of the real line. Then add() denotes the minimal cardinality of a subset of whose union is not an element of . In [1] Bartoszynski gave an elegant combinatorial characterization of add(), namely: add() is the least cardinal number κ for which the following assertion fails:For every family of at mostκ functions from ω to ω there is a function F from ω to the finite subsets of ω such that:1. For each m, F(m) has at most m + 1 elements, and2. for each f inthere are only finitely many m such that f(m) is not an element of F(m).The symbol A(κ) will denote the assertion above about κ. In the course of his proof, Bartoszynski also shows that the cardinality restriction in 1 is not sharp. Indeed, let (Rm: m < ω) be any sequence of integers such that for each m Rm, ≤ Rm+1, and such that limm→∞Rm = ∞. Then the truth of the assertion A(κ) is preserved if in 1 we say instead that1′. For each m, F(m) has at most Rm elements.We shall use this observation later on. We now define three more statements, denoted B(κ), C(κ) and D(κ), about cardinal number κ.


1972 ◽  
Vol 24 (5) ◽  
pp. 957-966 ◽  
Author(s):  
G. J. Butler ◽  
F. B. Richards

Let 1 be a subdivision of [0, 1], and let denote the class of functions whose restriction to each sub-interval is a polynomial of degree at most k. Gaier [1] has shown that for uniform subdivisions △n (that is, subdivisions for which if and only if f is a polynomial of degree at most k. Here, and subsequently, denotes the usual norm in Lp[0, 1], 1 ≦ p ≦ ∞, and we should emphasize that functions differing only on a set of Lebesgue measure zero are identified.


2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


2015 ◽  
Vol 93 (2) ◽  
pp. 272-282 ◽  
Author(s):  
JAEYOUNG CHUNG ◽  
JOHN MICHAEL RASSIAS

Let $G$ be a commutative group, $Y$ a real Banach space and $f:G\rightarrow Y$. We prove the Ulam–Hyers stability theorem for the cyclic functional equation $$\begin{eqnarray}\displaystyle \frac{1}{|H|}\mathop{\sum }_{h\in H}f(x+h\cdot y)=f(x)+f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in {\rm\Omega}$, where $H$ is a finite cyclic subgroup of $\text{Aut}(G)$ and ${\rm\Omega}\subset G\times G$ satisfies a certain condition. As a consequence, we consider a measure zero stability problem of the functional equation $$\begin{eqnarray}\displaystyle \frac{1}{N}\mathop{\sum }_{k=1}^{N}f(z+{\it\omega}^{k}{\it\zeta})=f(z)+f({\it\zeta}) & & \displaystyle \nonumber\end{eqnarray}$$ for all $(z,{\it\zeta})\in {\rm\Omega}$, where $f:\mathbb{C}\rightarrow Y,\,{\it\omega}=e^{2{\it\pi}i/N}$ and ${\rm\Omega}\subset \mathbb{C}^{2}$ has four-dimensional Lebesgue measure $0$.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


1982 ◽  
Vol 47 (1) ◽  
pp. 191-196 ◽  
Author(s):  
George Boolos

Let ‘ϕ’, ‘χ’, and ‘ψ’ be variables ranging over functions from the sentence letters P0, P1, … Pn, … of (propositional) modal logic to sentences of P(eano) Arithmetic), and for each sentence A of modal logic, inductively define Aϕ by[and similarly for other nonmodal propositional connectives]; andwhere Bew(x) is the standard provability predicate for PA and ⌈F⌉ is the PA numeral for the Gödel number of the formula F of PA. Then for any ϕ, (−□⊥)ϕ = −Bew(⌈⊥⌉), which is the consistency assertion for PA; a sentence S is undecidable in PA iff both and , where ϕ(p0) = S. If ψ(p0) is the undecidable sentence constructed by Gödel, then ⊬PA (−□⊥→ −□p0 & − □ − p0)ψ and ⊢PA(P0 ↔ −□⊥)ψ. However, if ψ(p0) is the undecidable sentence constructed by Rosser, then the situation is the other way around: ⊬PA(P0 ↔ −□⊥)ψ and ⊢PA (−□⊥→ −□−p0 & −□−p0)ψ. We call a sentence S of PA extremely undecidable if for all modal sentences A containing no sentence letter other than p0, if for some ψ, ⊬PAAψ, then ⊬PAAϕ, where ϕ(p0) = S. (So, roughly speaking, a sentence is extremely undecidable if it can be proved to have only those modal-logically characterizable properties that every sentence can be proved to have.) Thus extremely undecidable sentences are undecidable, but neither the Godel nor the Rosser sentence is extremely undecidable. It will follow at once from the main theorem of this paper that there are infinitely many inequivalent extremely undecidable sentences.


1973 ◽  
Vol 15 (2) ◽  
pp. 243-256 ◽  
Author(s):  
T. K. Sheng

It is well known that no rational number is approximable to order higher than 1. Roth [3] showed that an algebraic number is not approximable to order greater than 2. On the other hand it is easy to construct numbers, the Liouville numbers, which are approximable to any order (see [2], p. 162). We are led to the question, “Let Nn(α, β) denote the number of distinct rational points with denominators ≦ n contained in an interval (α, β). What is the behaviour of Nn(α, + 1/n) as α varies on the real line?” We shall prove that and that there are “compressions” and “rarefactions” of rational points on the real line.


2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


Sign in / Sign up

Export Citation Format

Share Document